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Abstract

The accuracy of a numerical fission gas release algorithm developed by Forsberg and Massih for solving the problem

of diffusive flow to a spherical grain boundary is analysed. Estimates of numerical errors are derived for both steady-

state and time varying conditions. We also present a method through which the accuracy of the algorithm can be

improved or optimised for most applications.

� 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The evaluation of the behaviour of fission product

gases in nuclear fuel is an important aspect of fuel rod

design and safety analysis [1]. The fission gases xenon

and krypton, generated during fissioning of uranium

and plutonium isotopes or through nuclear decay pro-

cesses, diffuse inside grains of UO2 fuel and precipi-

tate into intra- and intergranular gas bubbles. Grain

boundary gas bubble saturation (through bubble inter-

linkage) eventually leads to release of fission product

gases to the free volume of fuel rod. The fission gas re-

lease calculation method has a central role in fuel rod

behaviour codes (see, e.g. [2,3]). The common assump-

tion in many calculations is the concept of the equivalent

sphere model. This notion considers the polycrystalline

sinter as a collection of spheres of uniform size charac-

terised by a single radius a.

Nuclear fuel during reactor operation is subject to

time-varying power histories both under normal opera-

tion and in operational transients. This makes the

physical parameters entering the governing equations

for gas diffusion in fuel grains time dependent. Thus an

efficient algorithm for solving the diffusion equation,

with a time-dependent diffusion coefficient and source

term in a spherical grain, is important for computing

fission gas release in nuclear fuel behaviour codes.

Noble and Rim [4] obtained an exact solution for the

case of stepwise time varying conditions. However, this

method requires quite long computing times. Using a

variational principle, Matthews and Wood [5] derived a

more rapid algorithm for solving the diffusion problem.

Forsberg and Massih [6,7] presented an alternative rapid

and economical algorithm, using the method of an ap-

proximating kernel. Elton and Lassmann [8] evaluated

the accuracy of several fission gas release algorithms,

including the Forsberg–Massih algorithm, by calculat-

ing the errors for a large number of random operating

histories. Elton and Lassmann noted that the Forsberg–

Massih fission gas release algorithm has rather large

systematic errors at low fission gas release. More re-

cently, Lassmann and Benk [9] have reviewed and

analysed various numerical algorithms for intragranular

fission gas release. They conclude that although the

Forsberg–Massih algorithm can be considered to be

‘exact’ for gas release fractions above 0.05, for low re-

lease fractions it gives a systematic over-prediction.

Furthermore, they improved the accuracy of the original

Forsberg–Massih algorithm by slightly modifying that
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algorithm, which they called new FORMAS algorithm.

We believe that the inaccuracy in the original Forsberg–

Massih algorithm chiefly stems from the choice of fitting

coefficients appearing in the approximate solution and

not from the framework of the algorithm.

In this note we will derive some estimates of nu-

merical errors in the Forsberg–Massih fission gas release

algorithm. Based on these results we will suggest a

method through which the accuracy of the algorithm

can be improved (or optimised) for most types of ap-

plication. Finally, we present two examples of approxi-

mate kernels, which improve the accuracy of the

Forsberg–Massih algorithm.

2. The model

2.1. The diffusion equation and its formal solution

In the modelling of diffusive fission gas release in

nuclear fuel one assumes that the medium for gas dif-

fusion is an equivalent idealized spherical grain for

which the governing equation for concentration of gas

atoms is expressed by

ocðr; tÞ
ot

¼ DeðtÞr2
r cðr; tÞ þ bðtÞ ð1Þ

with the Laplacian operator:

r2
r �

o2

or2
þ 2

r
o

or
:

Here cðr; tÞ is the local concentration of fission gas, t

is the time, r is the radial coordinate in spherical co-

ordinates, bðtÞ is the rate at which gas is produced, DeðtÞ
is the effective gas diffusion coefficient [10] and a is the

equivalent grain size. The initial condition imposed on

Eq. (1) can be either cðr; 0Þ ¼ 0 or cðr; 0Þ ¼ cðrÞ. The
boundary condition in Eq. (1) can be the perfect sink

boundary condition, where all the gas reaching the grain

boundary will be released, i.e., the Dirichlet condition:

cða; tÞ ¼ 0: ð2Þ

If we cater for the presence of intergranular gas and re-

solution at the grain boundaries [10], the Cauchy con-

dition prevails:

cða; tÞ ¼ bðtÞkNðtÞ=2DeðtÞ; ð3Þ

where b is the re-solution rate, k the re-solution distance
(from the grain boundary) and N is the number of gas

atoms (in bubbles) per unit area of grain boundary.

In addition, the Neumann symmetry condition,

ocðr; tÞ=orjr¼0 ¼ 0, always must be fulfilled by Eq. (1).

Eq. (1) can be transformed to [6]

ocðr; sÞ
os

¼ r2
r cðr; sÞ þ

~bbðsÞ
~DDeðsÞ

ð4Þ

by making use of the co-ordinate transformation

s ¼
Z t

0

DeðtÞdt;

where the transformation is a diffeomorphism if De > 0

and De is a continuous function, or more precisely,
~DDeðsÞ 2 C0; also cðr; tðsÞÞ ! cðr; sÞ, ~DDeðsÞ ¼ DeðtðsÞÞ and
~bbðsÞ ¼ bðtðsÞÞ, for definitions see mathematical physics
texts, e.g. [11]. Similarly the boundary conditions (2) and

(3) in the s-space become, respectively

cða; sÞ ¼ 0; ð5Þ

cða; sÞ ¼ ~bbðsÞk ~NNðsÞ=2 ~DDeðsÞ; ð6Þ

where ~NNðsÞ ¼ NðtðsÞÞ and ~bbðsÞ ¼ bðtðsÞÞ. The average
gas concentration (per unit volume) in the grain of ra-

dius a is given by cðsÞ ¼ ð3=a3Þ
R a
0
r2cðr; sÞdr. Expanding

Eq. (4) in terms of the eigenfunctions of the Laplacian

operator, for the perfect sink boundary condition, Eq.

(5), we obtain [6]

cðsÞ ¼ 3

4p

Z s

0

K
s 
 s
a2

� �
PðsÞds; ð7Þ

where P ðsÞ ¼ ~bbðsÞ= ~DDeðsÞ and the kernel KðxÞ is given by

KðxÞ ¼ 8

p

X1
k¼1

e
k2p2x

k2
: ð8Þ

The fission gas release fraction, R, is defined by

RðsÞ ¼ 1
 cðsÞ
ccðsÞ

; ð9Þ

where

ccðsÞ ¼
Z tðsÞ

0

bðsÞds ¼
Z s

0

P ðsÞds: ð10Þ

For the Cauchy boundary condition, Eq. (6), the

areal gas density on the grain boundary is expressed as

[7]

~NNðsÞ ¼ 2

Z s

0

K2

s 
 s
a2

� �
P ðsÞ
"


 1

2

d

ds

~bbðsÞk ~NNðsÞ
~DDeðsÞ

 !#
ds;

ð11Þ

where

K2ðxÞ ¼
a
3

1




 3KðxÞ

4p

�
: ð12Þ

2.2. Incremental algorithm using an approximate kernel

In Forsberg and Massih [6] the kernel KðxÞ in Eq. (8)
is approximated by
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KðxÞ � ~KKðxÞ ¼
Xm
i¼1

Aie

Bix: ð13Þ

It is clear that Eq. (13) can approximate KðxÞ to any
order of accuracy by increasing the number of terms m.

The advantage of using an approximate kernel of the

form (13) is that it readily leads to an incremental al-

gorithm for calculation of c. Inserting the approximate
kernel (13) in Eq. (7) and assuming that PðsÞ � P ¼
constant in the interval s; s þ Ds½ �, we get the incre-
mental algorithm (cf. [9])

ciðs þ DsÞ ¼ 3

4p
e
BiDs=a2 4p

3
ciðsÞ


�

 Aia2

Bi
P
�
þ Aia2

Bi
P

;

ð14Þ

where cðsÞ ¼
Pm

i¼1 ciðsÞ is the average gas concentration
per unit volume of the grain.

In Forsberg and Massih [6] P ðsÞ was taken to be

piecewise linear, i.e., PðsÞ � P ðs þ DsÞ þ ðs
 s 
 DsÞh,
where h ¼ ðP ðs þ DsÞ 
 P ðsÞÞ=Ds in the interval s; sþð
DsÞ. This choice leads to the relation

ciðs þ DsÞ ¼ 3

4p
e
BiDs=a2 4p

3
ciðsÞ


�
þ a2Ai

Bi

a2h
Bi




 PðsÞ

��


 a2Ai

Bi

a2h
Bi




 Pðs þ DsÞ

�
: ð15Þ

3. Steady-state condition

In order to evaluate the accuracy of the foregoing

algorithm it is useful to have an exact solution. As-

suming a steady-state condition, under which the gas

production rate, the gas diffusion coefficient and the re-

solution rate are time independent, exact analytical so-

lutions for the considered governing equations, Eqs. (7)

and (11), can be found. In this section we present these

relations for the two cases under consideration, namely,

(i) the perfect sink boundary condition (Dirichlet), also

referred to as the intragranular gas release, and (ii) the

grain boundary gas accumulation and the re-solution

effect (Cauchy boundary condition), alluded to as the

intergranular gas release.

3.1. Dirichlet boundary condition

Let us consider the case that the gas production term

is constant, more precisely the ratio P ðsÞ ¼ ~bbðsÞ= ~DDeðsÞ �
P ¼ constant. Then using the identity

P1
k¼1 k


4 ¼ p4=90,
Eq. (7) can be integrated and the result, in terms of the

fission gas release fraction, Eq. (9), is expressed as

RðsÞ ¼ 1
 a2

15s
1

"

 90

p4
X1
k¼1

e
k2p2s=a2

k4

#
: ð16Þ

For the approximate solution, relation (13), the gas re-

lease fraction under steady-state condition is expressed

by

RðsÞ � ~RRðsÞ ¼ 1
 3a2

4ps

Xm
i¼1

Ai

Bi
1
�"


 e
Bis=a2
�#

: ð17Þ

After determining the coefficients Ai and Bi we shall

compare Eq. (16) with Eq. (17) to assess the level of our

approximation.

3.2. Cauchy boundary condition

For the case of grain boundary gas accumulation the

steady-state condition entails that the gas production

rate, diffusion coefficient and the re-solution rate are

constant with time. Here, however, we obtain exact re-

lations when the ratios ~bbðsÞ= ~DDeðsÞ and ~bbðsÞk= ~DDeðsÞ are
time independent, which provide, as the condition in

Section 3.1, a more general situation than steady-state.

The governing equation (11) for the kinetics of gas

concentration on the grain boundary becomes

~NNðsÞ ¼ 2

Z s

0

K2

s 
 s
a2

� �
P

"

 h1
2

d ~NNðsÞ
ds

#
ds; ð18Þ

where we assumed h1 � ~bbðsÞk= ~DDeðsÞ ¼ constant. The

unknown variable ~NN is embedded in the integrand of Eq.

(18). To find ~NN we may Laplace transform Eq. (18) and

use the convolution theorem [12] to write

N̂NðxÞ ¼ 2a2PK̂K2ða2xÞ
x½1þ h1a2xK̂K2ða2xÞ�

ð19Þ

with notation

f̂f ðxÞ ¼
Z 1

0

e
xsf ðsÞds: ð20Þ

In Eq. (19) K̂K2, which is the Laplace transform of the

kernel K2 given by Eq. (12), is in the form

K̂K2ðxÞ ¼ a
x2

ffiffiffiffi
x

p
cothð

ffiffiffiffi
x

p
Þ

�

 1
�
: ð21Þ

Relations (19) and (21) were derived earlier with slightly

different convention in Forsberg and Massih [7]. Fur-

thermore, in [7] the inverse Laplace transform of relation

(19) was carried out to find the short-time and the long-

time behaviour for ~NN . Here, since our aim is to analyse

the accuracy of our approximations, it is sufficient to

note that according to Eq. (19) on identifying K̂K2, N̂N is

determined uniquely for the given physical parameters,

P , h1 and a. Hence by comparing the Laplace transform

of Eq. (12) with Eq. (21) we can quantify the degree of

our approximation. The Laplace transform of Eq. (12) is

expressed as
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K̂K2ðxÞ � K
_

2ðxÞ ¼ a
3

1

x

 

 3

4p

Xm
i¼1

Ai

x þ Bi

!
: ð22Þ

After determining the coefficients Ai and Bi we shall

compare Eq. (21) with Eq. (22) to assess the level of our

approximation.

4. Analysis of error in approximate solution

The solution in Eq. (7) may be viewed as a functional

of the form

c F ;G½ �; sð Þ ¼ 3

4p

Z s

0

F
s 
 s
a2

� �
GðsÞds: ð23Þ

In the exact solution, F is given by the kernel K in Eq. (8)

and G is given by the quantity P. In the approximate

solutions (14) and (15), F is given by Eq. (13) and G is

given by the respective (piecewise constant and piecewise

linear) approximations of P.

In general, one may approximate K and P by writing

~KKðxÞ ¼ KðxÞ þ eðxÞ; ð24Þ

~PP ðxÞ ¼ P ðxÞ þ gðxÞ; ð25Þ

where e and g are the errors of the approximating

functions. It should be noted that gðxÞ is time step size
dependent and, at least in principle, can be made arbi-

trarily small by reducing the step size. We will there-

fore focus on the error in the calculated fission gas

release, which originates from e and assume that g ¼ 0.

The approximate solution to the diffusion equation, ex-

pressed in terms of fission gas release fraction, is

R ~KK; P
h i

; s
� �

¼ R K; P½ �; sð Þ 
 3

4p

R s=a2

0
e sð ÞP ðs 
 a2sÞdsR s=a2

0
P ðs 
 a2sÞds

¼ R K; P½ �; sð Þ 
 3

4p
e P ðs
��


 a2sÞ
�
; s=a2

�
;

ð26Þ

where e Pðs 
 a2sÞ½ �; s=a2ð Þ denotes the weighted mean

value of eðsÞ in the interval 0; s=a2½ � using P ðs 
 a2sÞ as
the weight function. In the special case that P ðxÞ ¼ P0 ¼
constant, we find

R ~KK; P
h i

; s
� �

¼ R K; P½ �; sð Þ 
 3

4p
eðs=a2Þ; ð27Þ

where e s=a2ð Þ is the mean value of eðsÞ in the interval
0; s=a2½ �.
We can put an upper limit on the absolute error in

the approximate solution. From Eq. (26) we obtain that

the absolute error, DRj j, takes the form

DRj j ¼ 3

4p
e Pðs
������ 
 a2sÞ

�
; s=a2

�����
¼ 3

4p

R s=a2

0
e sð ÞPðs 
 a2sÞdsR s=a2

0
Pðs 
 a2sÞds

�����
�����: ð28Þ

If supð eðsÞj jÞ ¼ eðs0Þj j ¼ emax, s 2 0; s=a2½ � then we have

maxð DRj jÞ ¼ 3

4p
eð dðs½

���� 
 s0Þ�; s=a2Þ
���� ¼ 3

4p
emax; ð29Þ

where dð�Þ is a generalised function (for instance the

Dirac delta function). The real irradiation histories

never give rise to condition P ðsÞ / dðsÞ, however, a
sharp power transient may approach this situation.

From relations (27) and (29) we see that the maxi-

mum possible error (neglecting the error in P) in the

calculated fission gas release is larger for the time-

dependent condition (P ðtÞ not constant) than for the

steady-state, i.e., emax P eðs=a2Þj j. This corollary has

been quantified by exemplary calculations presented in

Section 6. We may also conclude that a small error in

the steady-state (Eq. (27)) does not ensure an equally

small error under time-dependent conditions (Eq. (29)).

Hence, steady-state conditions per se would not in

general accurately quantify the degree of approximation

made on ~KK.

5. Finding an approximate kernel

In the previous section we showed that in order to

estimate the error in calculated fission gas release which

originates from the approximation of the kernel, K, we

need to know the quantity P. Therefore, the problem of

finding the coefficients Ai and Bi, and determining the

number of terms, m, in Eq. (13), which yield sufficient

accuracy in the calculated fission gas release, is depen-

dent on the P’s. For instance, in order to minimise the

maximum absolute error in fission gas release for con-

stant P we should according to Eq. (27) try to minimise

supð e sð Þj jÞ. For completely arbitrary P, on the other

hand, we should according to Eq. (29) minimise the

norm of e given by

ek k1 ¼ supðjeðsÞjÞ ¼ supðj ~KKðsÞ 
 KðsÞjÞ ð30Þ

for s in some interval 0; smax½ �. Minimising the norm

defined in Eq. (30) should be compared to minimising

the norm expressed as

ek k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ smax

0

eðsÞ2ds

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ smax

0

~KKðsÞ 
 KðsÞ
� �2

ds

s

ð31Þ

which, in a discrete form, is equivalent to the least-

square method (using a set of equidistant s values). It is
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therefore clear that the ordinary least-square method

does not provide a fit that in general would minimise the

absolute error in fission gas release. However, minimis-

ing Eq. (30) is more difficult than minimising Eq. (31).

Here we try to minimise Eq. (30) by introducing a weight

function wðsÞ (wðsÞ > 0) as follows:

ek k2w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ smax

0

wðsÞeðsÞ2ds

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ smax

0

wðsÞ ~KKðsÞ 
 KðsÞ
� �2

ds

s
: ð32Þ

The weight function wðsÞ is chosen in order to give a
small supðj ~KKðsÞ 
 KðsÞjÞ. No attempt has been made to
optimise the choice of w but we have selected (for ~KK
given by Eq. (13)) wðs
 dÞ � ðdl=dsÞ2 ¼ 1þ ðdKðsÞ=
dsÞ2 where d is a small number and lðsÞ is the length of
the parameterised curve C : rðsÞ ¼ ðs;KðsÞÞ; s 2 0; smax½ �.
This choice (which gives a higher weight to points close

to zero) somewhat compensates for the problem in the

fitting of Eq. (13), which originates from the fact that

dKðsÞ=ds ! 
1 as s ! 0þ. In the numerical imple-

mentation of this method, as in Lassmann and Benk [9],

we also impose the constraint
Pm

i¼1 Ai ¼ 4p=3 on the

coefficients Ai in Eq. (13). This constraint is obtained by

matching Eq. (8) with Eq. (13) and using the identityP1
k¼1 k


2 ¼ p2=6.

6. Examples and test cases

6.1. Approximate kernels

Using the minimisation method presented in Section

5 in the interval 0; smax ¼ 0:5½ � and five terms (m ¼ 5) in

Eq. (13) we obtain the following values for the coeffi-

cients Ai and Bi:

A1
A2
A3
A4
A5

0
BBBB@

1
CCCCA ¼

0:906322
0:432587
0:0501351
0:170014
2:6297321

0
BBBB@

1
CCCCA;

B1
B2
B3
B4
B5

0
BBBB@

1
CCCCA ¼

57:4131
387:104
162769
4410:53
10:0492

0
BBBB@

1
CCCCA:

ð33Þ

Fig. 1 shows the difference between the approximate

and exact kernels eðxÞ � ~KKðxÞ 
 KðxÞ versus x for two

different scales in x. From the figure we see that

supð e sð Þj jÞ � 0:006 and therefore, according to Eq. (29),
we should have maxð DRj jÞ � ð3=4pÞ0:006 � 0:0014.
This means that we do not expect the error in the cal-

culated fission gas release fraction (emanating from the

approximation of K) to exceed 0.0014.

Using our fitting method in the interval 0; smax ¼ 0:5½ �
and four terms (m ¼ 4) in Eq. (13) we obtain the fol-

lowing values for the coefficients Ai and Bi:

Fig. 1. The difference between the approximate and the exact kernel, eðxÞ ¼ ~KKðxÞ 
 KðxÞ, versus x in the intervals: 0; 0:5½ � and
0; 0:0005½ �. ~KKðxÞ is calculated by relation (13) with m ¼ 5 according to Eq. (33) while KðxÞ is evaluated using Eq. (8) with

(k ¼ 1; 2; . . . ; 104).
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A1
A2
A3
A4

0
BB@

1
CCA ¼

0:969892
0:397287
0:118500
2:7031112

0
BB@

1
CCA;

B1
B2
B3
B4

0
BB@

1
CCA ¼

72:5968
796:773
29083:0
10:2469

0
BB@

1
CCA:

ð34Þ

Fig. 2 shows eðxÞ � ~KKðxÞ 
 KðxÞ versus x for two dif-

ferent scales in x. From the figure we notice that

supð e sð Þj jÞ � 0:014 and thus, according to Eq. (29), we
should have maxð DRj jÞ � ð3=4pÞ0:014 � 0:0033. This
means that we do not expect the error in calculated fis-

sion gas release fraction (originating from the approxi-

mation of K) to exceed 0.0033.

We should remark that for the case of intergranu-

lar gas release (Cauchy boundary condition) the same

coefficients (33) and (34) prevail. This is because the

same kernel governs the kinetics of the process, cf. re-

lations (11) and (18). For example, the quantities of

interest for this problem are the intergranular gas den-

sity (per unit volume) Cb ¼ 3N=2a and the intragranular
gas density defined by the relation: C0ðsÞ ¼

R a
0
4pr2 cðr;½

sÞ 
 cða; sÞ�dr. As shown in [7] the kinetics of these

quantities, for h1 � ~bbðsÞk= ~DDeðsÞ ¼ constant, can be de-

scribed by

CbðsÞ ¼
Z s

0

3

a
K2

s 
 s
a2

� �
qðsÞds; ð35Þ

C0ðsÞ ¼
Z s

0

1

�

 3

a
K2

s 
 s
a2

� �
qðsÞds; ð36Þ

where

qðsÞ ¼ P ðsÞ 
 ah1
3

dCbðsÞ
ds

: ð37Þ

Thus the kernel appearing in the integrand of Eq. (36)

can be approximated as

1
 3

a
K2ðxÞ �

Xm
i¼1

3

4p
Aie


Bix ð38Þ

and so forth (where to obtain relation (38) we utilized

Eqs. (12) and (13)).

It should be noted that the error estimates presented

in Section 4 are derived for the case of Dirichlet

boundary condition and that we have not derived sim-

ilar error estimates for the case of Cauchy boundary

condition. However, for a small grain boundary re-

solution (h1 sufficiently small) we see from Eqs. (35) and

(37) that the error estimates in Eqs. (27) and (29) are

approximately valid also for the Cauchy boundary

condition.

6.2. Results for steady-state

For constant conditions (PðsÞ ¼ P0 ¼ constant) we

compare the exact solution for the gas release fraction

given by Eq. (16) with the associating approximate so-

lution given by Eq. (17) using P ¼ P0 and the coefficients
given in Eq. (33) (i.e. m ¼ 5). The comparison is depicted

in Fig. 3. Fig. 4 shows the difference between the two

solutions, i.e.,DðxÞ � ~RRðxÞ 
 RðxÞ versus x � s=a2. From

Fig. 2. The difference between the approximate and the exact kernel, eðxÞ ¼ ~KKðxÞ 
 KðxÞ, versus x in the intervals: 0; 0:5½ � and
0; 0:0005½ �. ~KKðxÞ is calculated by relation (13) with m ¼ 4 according to Eq. (34) while KðxÞ is evaluated using Eq. (8) with

ðk ¼ 1; 2; . . . ; 104Þ.
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Fig. 4 we can deduce that the accuracy of the algorithm

is good for constant conditions and that the maximum

error is less than 0.0014, or supð D sð Þj jÞ < 0:014, which
is consistent with our results in Sections 4 and 6.1.

Comparing the exact solution in Eq. (16) with the

approximate solution in Eq. (17) using P ¼ P0 and the
coefficients given in Eq. (34) we obtain the result for DðxÞ
versus x shown in Fig. 5. From Fig. 5 we notice that

the accuracy of the approximate algorithm is quite

good and that the maximum error is less than 0.0033,

supð D sð Þj jÞ < 0:0033, which is consistent with our results
in Sections 4 and 6.1.

6.3. Results for the intergranular gas

Finally, we compare the exact expression (21) and the

associating approximate relation (22) for the Laplace

transform of the kernel K2 given by Eq. (12). This kernel
appears in the calculation of the intergranular gas re-

lease according to Forsberg and Massih [7]. Fig. 6 shows

the difference between the approximate kernel and exact

Fig. 3. Gas release fraction R as a function of ‘time’ is calcu-

lated using the approximate relation (17) with the coefficients

according to Eq. (33) versus the exact solution Eq. (16) with

ðk ¼ 1; 2; . . . ; 104Þ for R < 0:2.

Fig. 4. The difference between the approximate and the exact

gas release fraction, DðxÞ � ~RRðxÞ 
 RðxÞ versus x � s=a2 for
R < 0:2. ~RRðxÞ is calculated by using relation (17) with m ¼ 5

according to Eq. (33) while RðxÞ is evaluated using relation (16)
with ðk ¼ 1; 2; . . . ; 104Þ.

Fig. 5. The difference between the approximate and the exact

gas release fraction, DðxÞ � ~RRðxÞ 
 RðxÞ versus x � s=a2 for
R < 0:2. ~RRðxÞ is calculated by using relation (17) with m ¼ 4

according to Eq. (34) while RðxÞ is evaluated using relation (16)
with ðk ¼ 1; 2; . . . ; 104Þ.

Fig. 6. The difference between the approximate and the exact

kernel in x-space, E2ðxÞ � K
_

2ðxÞ 
 K̂K2ðxÞ
� �

=a. K
_

2ðxÞ is cal-
culated by using relation (22) with m ¼ 5 according to Eq. (33)

while K̂K2ðxÞ is evaluated using relation (21).
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kernel E2ðxÞ � K
_

2ðxÞ 
 K̂K2ðxÞ
� �

=a versus x using the

coefficients given in Eq. (33). As can be seen from this

figure supð E2 sð Þj jÞ � 5� 10
5.

7. Closure

In this note we have analysed the accuracy of a nu-

merical method of Forsberg and Massih for calculating

fission gas release fractions. We have presented some

results, which give an estimate of the maximum absolute

error in the calculated fission gas release. A new ap-

proximation of the coefficients in the kernel is also

presented which gives satisfactory accuracy in the cal-

culated fission gas release for both low and high release

regimes.

The analysis by Elton and Lassmann [8] shows that

the original approximate kernel in the Forsberg–Massih

algorithm [6] results in a maximum absolute error (at

low release) of about 0.02. The present analysis shows

that the maximum absolute error (using the new fitting

method and one extra term, m ¼ 4, in the approximate

kernel) can be reduced to 0.0034. This is in concordance

with recent calculations of Lassmann [13], where a better

fitting of the new FORMAS algorithm (cf. Section 1)

improved the accuracy of the algorithm. The new

FORMAS algorithm according to Lassmann is sim-

ple, fast, robust, insensitive to time step lengths and

well balanced over the entire range of fission gas release

[13].
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